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Abstract

A popular approximation in lattice gauge theory is an extrapolation in the number of fermion species

away from the four fold degeneracy natural with the staggered fermions formulation. I show that at finite

lattice spacing and for an odd number of flavors this extrapolation misses terms which, on general principles,

must be present in the continuum theory. For a correct continuum limit, this forces unphysical singularities

in parameter regions where continuum physics is smooth and all physical particles are massive. These

singularities are not expected with other lattice regulators. Finally, I argue that unnatural constraints on

certain correlation functions appear even when all quarks are massive.

PACS numbers: 11.15.Ha, 11.30.Rd, 12.38.Gc, 12.39.Fe

1



Lattice gauge theory provides a powerful tool for the investigation of non-perturbative phe-

nomena in strongly coupled field theories, such as the quark confining dynamics of the strong

interactions. However numerical calculations are quite computer intensive, strongly motivating

approximations that reduce this need. One such, the valenceor quenched approximation [1, 2],

introduces rather uncontrolled uncertainties, but with the growth in computer power, its use is

currently being eliminated.

Another popular approximation [3, 4] arises from the simplicity of the staggered fermion for-

mulation [5–7]. With only one Dirac component on each site, the large matrix inversions involved

with conventional algorithms are substantially faster than with other fermion formulations. How-

ever the approach and its generalizations are based on a discretization method that inherently

requires a multiple of four fundamental fermions. The reasons for this are related to the can-

cellation of chiral anomalies. To apply the technique to thephysical situation of two light and

one intermediate mass quark requires an extrapolation downin the number of fermions. As usu-

ally implemented, the approach involves taking a root of thefermion determinant inside standard

hybrid Monte Carlo simulation algorithms. This step has notbeen justified theoretically. The pur-

pose of this note is to show that at finite lattice spacing thisreduction inherently misses certain

required terms in the chiral expansion for the continuum theory. To reproduce these terms in the

continuum limit requires the introduction of unphysical singularities which persist at finite volume

and in regions of parameter space where there are no physicalmassless particles. Even in regions

where the physical fermion determinant is positive definite, the procedure imposes unexpected and

non-trivial constraints on correlations between certain fermion bilinears.

The method has its roots in the “naive” discretization of thederivatives in the Dirac equation

ψγµ∂µ ψ →
1
2a

ψxγµ(ψx+aeµ −ψx−aeµ ) (1)

with a denoting the lattice spacing. Fourier transforming to momentum space, the momentum

becomes a trigonometric function

pµ →
1
ia

(eiapµ − e−iapµ ) =
1
a

sin(apµ) (2)

The natural range of momentum is−π/a < pµ ≤ π/a. The doubling issue is that the propagator

has poles not just at small momentum, but also when any component is nearπ in magnitude. These

all contribute as intermediate states in Feynman diagrams;so, the theory effectively has 24 = 16

fermions. I refer to these multiple states as “doublers” or “flavors” in the following discussion.
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Note that the slope of the sine function atπ is opposite to that at 0. This can be absorbed by

changing the sign of the corresponding gamma matrix. This changes the sign ofγ5 as well; so,

the doublers divide into different chirality subsets. The determinant of the Dirac operator is not

simply the sixteenth power of a single determinant.

Without a mass, the naive action has an exact chiral symmetryof the kinetic term under

ψ → eiθγ5ψ

ψ → ψeiθγ5 (3)

The conventional mass term is not invariant under this rotation

mψψ → mψψ cos(2θ)+ imψγ5ψ sin(2θ) (4)

Thus any mass term of the form on the right hand side of this relation can have theta rotated away.

This is consistent with known anomalies since this is in reality a flavor non-singlet chiral rotation.

The different species use different signs forγ5. As special cases, in this theorym,−m, and±iγ5m

are all physically equivalent.

To arrive at the staggered formulation, note that whenever afermion hops between neighboring

sites in directionµ, it picks up a factor ofγµ . An arbitrary closed fermion loop on a hypercubic

lattice gives a product of many gamma factors, but any particular component always appears an

even number of times. Bringing them through each other usinganti-commutation, the net factor

for any loop is proportional to unity. Gauge fields don’t change this fact since they just involve

SU(3) phases on the links. So if a fermion starts in one spinor component, it returns to the same

component after the loop. The 4 Dirac components give 4 independent theories. There is an exact

SU(4) symmetry. Without a mass term, this is actually an exactSU(4)⊗SU(4) chiral symmetry

[8].

Staggered fermions single out one component on each site. Which component depends on the

gamma factors to get to the site in question from one startingsite. Ignoring the other compo-

nents reduces the degeneracy from 16 to 4. The process bringsin various oscillating phases from

the gamma matrix components. One explicit projection that accomplishes this is (using integer

coordinates and the conventionγ5 = −γ1γ2γ3γ4 with Euclidean gamma matrices)

P = P2 =
1
4

(

1+ iγ1γ2(−1)x1+x2 + iγ3γ4(−1)x3+x4 + γ5(−1)x1+x2+x3+x4
)

(5)

Note that some degeneracy must remain. No chiral breaking appears in the action, and all infinities

are removed. Thus there is no way for the anomaly to appear. Itis canceled between the remaining
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species. Furthermore, the naive replacementψ → γ5ψ exactly relates the theory with massm and

mass−m. With 4 flavors this symmetry is allowed since there is a flavored chiral rotation that

gives it. The doublers still are in chiral pairs.

To proceed I sketch how a typical simulation with fermions proceeds. For a generic fermion

matrixD, the goal of a the simulation is to generate configurations ofgauge fieldsA with a proba-

bility

P(A) ∝ exp(−Sg(A)+N f Tr log(D(A))) (6)

HereSg is the pure gauge part of the action. With some algorithms additional commuting “pseudo-

fermion” fields are introduced [9, 10], but these details arenot important to the following discus-

sion. With staggered or naive fermions the eigenvalues ofD all appear in complex conjugate pairs;

thus, the determinant is non-negative as necessary for a probability density.

In hybrid Monte Carlo schemes [11] auxiliary “momentum” variablesP are introduced, one for

each degree of freedom inA. The above distribution is generalized into

P(A,P) ∝ exp
(

−Sg(A)+N f Tr log(D(A))+∑P2
i /2

)

(7)

As the momenta are Gaussian random variables, it is easy to generate a new set at any time. For

the gauge fields one sets up a “trajectory” in a fictitious “Monte Carlo” time variableτ and uses

the exponent in (7) as a classical Hamiltonian

H = ∑P2
i /2+V (A) (8)

with the “potential”

V (A) = −Sg(A)+N f Tr log(D(A)). (9)

The Hamiltonian dynamics

dAi
dτ = Pi

dPi
dτ = Fi(A) = −

∂V (A)
∂A (10)

conserves energy and phase space. Under such evolution the equilibrium ensemble stays in equi-

librium, a sufficient condition for a valid Monte Carlo algorithm. After evolution along a trajectory

of some lengthτ, discretized time stepsδτ can introduce finite step errors and give a small change

in the “energy.” The hybrid Monte Carlo algorithm corrects for this with a Metropolis accept/reject

step on the entire the trajectory. The trajectory length andstep size are parameters to be adjusted
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for reasonable acceptance. After the trajectory one can refresh the momenta by generating a new

set of gaussianly distributed random numbers. The procedure requires the “force” term

Fi(A) = −
∂V (A)

∂A
=

∂Sg(A)

∂A
−N f Tr

(

D−1∂D(A)

∂A

)

. (11)

To calculate the second term requires an inversion of the sparse matrixD applied to a fixed vector.

Standard linear algebra techniques such as a conjugate gradient algorithm can accomplish this. In

practice this step is the most time consuming part of the algorithm.

Returning to staggered fermions, one would like to eliminate the unwanted degeneracy by a

factor of four. One attempt to do this reduction involves an extrapolation in the number of flavors.

In the molecular dynamics trajectories for the simulation of the gauge field, the coefficient of

the fermionic force term in Eq. (11) is arbitrarily reduced from N f to N f /4, whereN f is the

desired number of physical flavors. Although not proven, this seems reasonable whenN f is itself

a multiple of four. The controversy arises for other values of N f .

Here I argue that the procedure is an approximation that incorrectly predicts certain qualitative

behaviors. The issue is clearest in the chiral limit when when N f is odd. For the staggered theory,

the fermion determinant is a function ofm2. The surviving chiral symmetry gives equivalent

physics for eitherm or−m. The primary problem with the extrapolation appears at thispoint. It is

well known that with an odd number of flavors, physics has no symmetry under changing the sign

of the mass [12–14]. The most dramatic demonstration of thisappears in the one flavor theory. In

this case anomalies break all chiral symmetries and no Goldstone bosons are expected. The theory

behaves smoothly as the mass parameter passes through zero.The lightest meson, call it theη ′,

acquires a mass through anomaly effects, and the lowest order quark mass corrections are linear

m2
η ′(m) = m2

η ′(0)+ cm (12)

Such a linear dependence in a physical observable is immediately inconsistent withm ↔ −m

symmetry.

The one flavor case is perhaps a bit special, but there are similar problems with the three flavor

situation [14]. Identify the quark bi-linear with an effective chiral fieldψaψb ∼ Σab. Herea andb

are flavor indices. TheSU(3)⊗SU(3) chiral symmetry of the massless theory is embodied in the

transformation

Σ → g†
LΣgR (13)

with gL,gR ∈ SU(3). For positive mass,Σ should have an expectation value proportional to the

SU(3) identity I. This is not equivalent to the negative mass theory because−I is not in SU(3).
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Indeed, for negative mass it is expected that the infinite volume theory spontaneously breaksCP

symmetry, with〈Σ〉 ∝ e±2πi/3 [14, 15].

These qualitative effective Lagrangian arguments are quite powerful and general. Another way

to see the one flavor behavior is to start with a larger number of flavors, say 3 or 4, and make

the masses non-degenerate. As only one of the masses passes through zero, the behavior for the

lightest meson mimics that in Eq. (12). Extrapolated staggered quarks with their symmetry under

taking any quark mass to its negative will miss the linear term.

Note that with degenerate quarks these arguments become sharpest at finite volume. In the in-

finite volume limit the multiflavor massless theory exhibitsspontaneous chiral symmetry breaking

and a non-analytic behavior in the mass atm = 0. But at finite volume and with a finite lattice spac-

ing all physical quantities being considered are analytic.The only way the extrapolation fromN f

to N f /4 to give correct physics at finite volume would be for it to introduce unphysical nonanalytic

terms.

Small real eigenvalues of the Dirac operator are responsible for these effects. The odd terms

come from topological structures in the gauge fields [16]. For small mass in the traditional contin-

uum discussion,|D| ∼ mν with ν the winding number of the gauge field. The condensate

〈ψψ〉 =
1
Z

∫

(dA)|D|N f e−Sg(A) Tr D−1 (14)

receives a contribution going asmN f−1 from theν = 1 sector. For the one flavor case, this is an

additive constant. This constant will be missing from the extrapolated staggered theory because of

the symmetry in Eq. (3). This phenomenon is also responsiblefor the fact that a single massless

quark is not a well defined concept [17].

For the general odd flavor case, the odd winding number terms have the opposite symmetry

under the sign of the mass than the even terms, although with more flavors this starts at a higher

order in the mass. For 3 flavors the condensate at finite volumewill display a m2 correction to

the leading linear behavior. The extrapolation down from the staggered 4 flavor theory will not

see this. While the zero modes of the Dirac operator are suppressed at finite volume, they do not

vanish.

This mechanism emphasizes an important distinction between staggered and other fermion

formulations. With staggered fermions there is no exact index relation between the zero modes of

the Dirac operator and the topology of the gauge fields [18]. Isolated real eigenvalues of the Dirac

operator are a robust concept for many formulations, such asWilson [19, 20], domain wall [21],
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and overlap [22] fermions. However this is not expected for the staggered fermions, where the

real part of all eigenvalues is pinned to the mass. As discussed above, the exact chiral symmetry

is actually a flavored chiral rotation. The respective species transform with different signs for

γ5. Because of this, the corresponding zero modes genericallycan mix. Small variations in the

gauge field can split the degenerate real eigenvalues apart into the complex plane. Unlike with

the overlap, those gauge configurations where the staggeredmatrix has exactly real eigenvalues is

expected to be a set of measure zero. For all other configurations the determinant is non-vanishing

and analytic inm2 around 0.

While I have shown diseases with the chiral behavior of extrapolated staggered fermions at

finite cutoff, technically I have not proven that these problems survive as the cutoff is removed

[23–25]. Indeed, in field theory we are accustomed to the non-commutation of certain limits, such

as vanishing mass and infinite volume when a symmetry is beingspontaneously broken. In that

case the mass and the volume are both infrared issues. As the lattice is an ultraviolet regulator and

the chiral issues raised here involve long distance physics, it seems peculiar for the order of these

limits to affect each other. Nevertheless, suppose that taking the cutoff to zero before taking the

massless limit does give the correct physics. Then the regulator must introduce singularities that

are not present in the continuum theory.

The issue is again clearest for the one flavor theory, where inthe continuum the condensate,

〈ψψ〉 appropriately renormalized, does not vanish and is smoothly behaved around m=0. Ana-

lyticity in the mass is expected with a radius of order the eta-prime mass-squared over the typical

scale of the strong interactions,Λqcd. Now turn on the extrapolated staggered regulator. Atm = 0,

〈ψψ〉 must suddenly jump to zero. For every eigenvalue of the staggered fermion matrix at van-

ishing mass, its negative is also an eigenvalue. Thus configuration by configuration the trace of

D−1, and thus the condensate, is identically zero. Furthermore, due to confinement and the chiral

anomaly, this unphysical jump occurs both at finite volume and in the absence of any massless

physical particles for the continuum theory.

This issue generalizes to the multiflavor theory with non-degenerate quark masses. The pro-

posed regulator forces the condensate associated with any given species to vanish with the corre-

sponding mass, in contradiction with the continuum behavior expected from effective Lagrangian

analysis. Physical observables at specific points in parameter space where continuum physics is

smooth are forced to develop infinite derivatives with respect to the cutoff as it is removed. Even if

this occurs only in the vicinity of isolated points, this seems an absurd behavior for an ultraviolet
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regulator and is in strong contrast to more sensible schemessuch as Wilson fermions [19].

Despite this highly unphysical behavior, certain authors [24] continue to advocate that, while

ugly, the continuum limit could be correct as long as one avoids these singularities. This, however,

requires some rather peculiar relations amongst correlation functions even for quark masses in

regimes where the fermion determinant is expected to be positive definite. Consider the case of

two flavor QCD with quark massesmu andmd. Complexifying the mass terms in the usual way

∑
a=u,d

Rema ψaψa + i Im ma ψaγ5ψa (15)

the physical theory is invariant under the flavored chiral rotation

mu → eiθ mu

md → e−iθ md (16)

Due to the chiral anomaly, it must not be invariant under the singlet chiral rotation

mu → eiθ mu

md → eiθ md (17)

The symmetry in mass parameter space requires that the rotations of the up and down quark masses

be in opposite directions.

Now formulate this theory with two independent staggered fermions, one for the up and one

for the down quark, each reduced using the rooting procedure. From Eq. (5), the corresponding

complexification of the staggered mass term takes the form

∑
a=u,d

(Rema + iS( j) Im ma) ψ†( j)ψ( j) (18)

with S( j) being±1 depending on the parity of the sitej. The issue arises from the fact that

that the staggered fermion determinant, and therefore the path integral, are exactly invariant under

m → eiθ m for either the up or the down quark. This is too much symmetry in parameter space. It

is precisely this extra symmetry that forces the unphysicalsingularities mentioned above. But the

consequences extend to positive masses as well. Considering an infinitesmal rotation on the up

quark alone, we have
dZ
dθu

∣

∣

∣

∣

θu=0
= 0 (19)
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This means that correlators of

∑
j

S( j)ψ†
u ( j)ψu( j) (20)

with any operators not involving the up quark field must vanish identically. This occurs configu-

ration by configuration and for any quark masses. As one example,
〈

ψ†
d (k)ψd(k) ∑

j
S( j)ψ†

u ( j)ψu( j)

〉

= 0 (21)

requires a delicate cancellation of the expected contribution from theπ0 at large distances against

short distance physics. As the former contribution diverges as the quark mass goes to zero, this

cancellation seems highly contrived and is unexpected in other formulations. Note that for the

unextrapolated theory the cancellation occurs naturally between the additional bosons of the 8

flavors. But the two flavor theory should only have one neutralpion.

I have argued that the extrapolation involved in extrapolating the staggered quark formulation of

lattice gauge theory to physical numbers of species is unlikely to become exact in the continuum

limit. The behavior in the chiral limit is incorrect at finitelattice spacing, forcing unphysical

singularities. For all mass values, including where the physical fermion determinant is positive

definite, certain non-trivial correlations are unexpectedly forced to vanish.

The approximation may still be reasonable for some observables, most particularly those in-

volving only flavor non-singlet particles. But any predictions for which anomalies are important

are particularly suspect. This includes theη ′ mass, but also more mundane quantities such as the

lightest baryon mass, which in the chiral limit also receives a non-perturbative contribution.
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